设为首页 - 加入收藏 伊春站长网 (http://www.0458zz.com)- 国内知名站长资讯网站,提供最新最全的站长资讯,创业经验,网站建设等!
热搜: 用户 那些 运营商 芯片
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

相关不等于因果,深度学习让AI问出“十万个为什么”

发布时间:2019-08-28 06:25 所属栏目:[经验] 来源:searchenterpriseai 编译:张大笔茹 生活经
导读:大数据文摘出品 来源:searchenterpriseai 编译:张大笔茹 生活经验告诉我们,相关关系并不能直接推导出因果关系,但不管是日常生活还是学术研究,对于因果关系的解释要远比相关关系重要得多。很多时候,我们也会对事件之间的因果关系捉襟见肘。 如果,把

相关不等于因果,深度学习让AI问出“十万个为什么”

大数据文摘出品

来源:searchenterpriseai

编译:张大笔茹

生活经验告诉我们,相关关系并不能直接推导出因果关系,但不管是日常生活还是学术研究,对于因果关系的解释要远比相关关系重要得多。很多时候,我们也会对事件之间的因果关系捉襟见肘。

如果,把这个过程交给AI来处理会怎样呢?

AI可以利用深度学习技术来构建相关关系模型。但是,用于确定事情发生原因的因果深度学习目前仍处于起步阶段,而且它的自动化比普通神经网络也困难许多。

大部分AI都是通过分析大量数据寻找其中隐藏的规律。全球IT服务公司L&T Infotech的执行副总裁兼首席数据分析官苏门德拉·莫汉蒂(Soumendra Mohanty)表示,“显然,这能使我们能了解到‘是什么’,但却很少能理解‘为什么’”。

这个区别的影响是很大的。建造人工智能的最终目的是训练AI回答为什么这个因素会影响那个因素,这就是许多研究人员现在将注意力转向这儿的原因。

加州大学洛杉矶分校的教授朱迪亚·珀尔(Judea Pearl)的关于实施贝叶斯网络统计分析的研究取得重要成绩,他在开发一个可以在可计算框架中区分事件原因的、用于绘制因果关系图的框架。

分析因果关系的最大挑战之一是通过专家判断一件事情的原因,此为主观意见,然后再通过各种分析技术将其分开。这与统计机器学习所追求的“客观”形成鲜明对比。长远来看,因果关系研究可以帮助我们更好地理解世界;短期内,因果分析也可以更好地解释机器学习模型的结果。

不再期待AI奇迹般地预测未来

Information Builders营销副总裁杰克·弗赖瓦尔德(Jake Freivald)说:“商业精英通常不相信黑盒子技术,但他们却对人工智能技术有着异乎寻常的期待。”他表示,企业家意识到将业务流程交给人工智能算法可能就像让他们两岁的孩子驾驶自己的汽车一样冒险。

问题在于,分析型AI主要用于查找数据集中的相关性,而相关性仅仅能暗示因果关系,无法准确解释事情为什么发生。相关性只能告诉你接下来可能会发生什么。

“我们越能在模型中梳理出因果关系,就越能在现实基础上准确评估事情发生的原因以及接下来会发生什么,”弗雷瓦德说,“只有到那时,将业务交给人工智能就可以很好地完成工作。否则,结果可能是灾难性的。”

相关不等于因果,深度学习让AI问出“十万个为什么”

不再仅仅是拟合曲线

拟合曲线在回答诸如“下一个最佳报价是什么?”、“这会是诈骗吗?” 或者“它是猫吗?”这类问题上表现出色。

“但现实世界中,很多问题是无法仅通过曲线拟合度解决的,”莫汉蒂说。如果几个因素都可以预测产品偏好,那企业应该选择哪些因素以及如何确定其重要性顺序呢?简单地将不同变量按强度排列与独立选择一些因素并单独评估其对预测结果的贡献程度的结果是不同的。

“我们可以观察相关性,但并不能证明甚至解释因果关系,”莫汉蒂说。因果关系回答的是“我应该采取什么行动才能实现改变?”或“如果我改变模型的一些基本假设会怎样?”

因果深度学习技术(又称结构方程模型SEM)已存在多年了。然而,这些技术或多或少地局限于学术研究,目前还没有应用到商业领域。

蒙特卡罗模拟,马尔可夫链分析,朴素贝叶斯和随机建模是当今常用的一些技术,但它们几乎都不能分析因果关系。还有一些开源软件包,如DAGitty(一个基于浏览器的环境,用于创建,编辑和分析因果模型以及Microsoft的DoWhy库的软件包)也用于因果推理。但这些仍在发展中。

自动库存管理系统的制造商Pinsa Systems的首席执行官兼总裁理查德·施瓦茨(Richard Schwartz)表示,在整体上看,AI应用程序会根据其观察到的模式执行一系列操作。深度学习使用统计技术来发现规律。在AI中嵌入因果理解的不同方法需要开发基于规则的系统。这种系统可以从其他类型的客观事实中得出结论,例如“右转三次等同于左转”。

规则可以是因果关系或认知关系,它们有助于根据输入对结果进行建模,但它们也有缺点:“因果规则很难界定的,明确定义往往更难。”

相关不等于因果,深度学习让AI问出“十万个为什么”

潜在的解决方案是两种方法的组合,例如,为神经网络创建可解释性模块。这种系统的因果深度学习模式是以更加艰苦的方式构建如何达成结论的认知模型。

另外一种比较好的因果AI技术是通过强化学习领域的“从示范中学习”(Learning from demonstration),这种方法首先输入一些计算机完成某些事情的例子,然后让计算机适应该技术,自己解决问题。

彭萨(Pensa)在其库存管理工具中使用两种类型的人工智能来解决与商店货架上重新进货库存相关的问题。主要产品使用神经网络,用以解决摄像机的计算机视觉输入识别货架上的物品(例如,亨氏牌番茄酱)以及货架的摆放方式(例如,亨氏牌产品通常在亨特牌产品的旁边)等问题。

使用因果模型生成自动提示,例如“亨氏番茄酱快要缺货”,或者“亨氏番茄酱已经完全缺货”。为了得出这个结论,系统不仅需要识别产品,还需要理解货架上物品的相关库存控制规则以及重新进货的意义。

人类通常非常擅长得到认知型结论,例如制定经验法则,从而得出结论。“这是人工智能的瓶颈,”施瓦茨说。

无需模型的因果关系

德克萨斯大学奥斯汀分校的人工智能教授斯科特·尼克姆(Scott Niekum)说,强化学习本质上是因果关系,因为智能体会尝试不同的方式并通过反复试验来了解其是如何得到结果的。这种类型的学习被称为“非模型学习”,很受欢迎,因为它可以学习正确的或有效的行为而无需学习世界是如何运作的。

换句话说,智能体学习行动与后果之间的因果关系,而不是行动如何直接影响世界的。例如,它可以在不了解水和火之间的关系的情况下翻转火上方的水桶将水倒出用来灭火。

非模型学习是一把双刃剑。如果没有模型,智能体就必须从头学习如何在问题发生变化时解决问题。

【免责声明】本站内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。

网友评论
推荐文章